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Abstract A Joint chance-constrained programming 

(JCCP) technique is regarded as one of the most useful 

applicable techniques of stochastic programming 

techniques. It is more suitable for solving uncertain real 

problems, especially in economics and social problems, 

where some of model parameters are positive dependent 

random variables and follow well-known probability 

distributions. In this paper, we take into account a linear 

JCCP problem where some right-hand side random 

parameters are dependent and follow the Dagum 

distributions. So, firstly we derive a bivariate Dagum 

distribution with seven parameters with marginals 

following the Dagum distribution with three parameters. 

This proposed bivariate Dagum distribution is based on 

the Farlie-Gumbel-Morgensten copula (as presented in 

theorem (2.1)). Secondly, the proposed bivariate 

distribution is used in the context of JCCP technique to 

transform a linear JCCP model into an exact equivalent 

deterministic nonlinear programming model through 

theorem (3.1). Thirdly, through theorem (3.2), we prove 

that the obtained exact equivalent deterministic nonlinear 

programming model is a convex model, hence any 

nonlinear programming method can be used to solve it 

and find the global optimal solution. Finally, in order to 

demonstrate how to convert a linear JCCP model into an 

equivalent deterministic nonlinear programming model 

and solve it using the cutting plane method, a numerical 

example is included. 

Keywords  Farlie-Gumbel-Morgensten Copula, 

Chance Constrained Programming (CCP), JCCP, 

Bivariate Dagum Distribution, Multivariate Distributions, 

Equivalent Deterministic Model, Convex Model, Cutting 

Plane Method, Global Solution 

 

1. Introduction 

In 1977, Camilo Dagum first presented the 

three-parameter Dagum distribution for modelling 

personal income data [1]. The Pareto and Log-normal 

distributions can also be replaced with it [2, 3]. 

Additionally, several applications have used this 

distribution, for example, income and consumption data [4], 

financial data [5], and reliability analysis [6]. It is worth 

noting that the Dagum distribution is related to many 

distributions, for instance, the Burr type XII, Burr type III, 

Lomax, log logistic distribution, and the exponential 

distribution [2,7]. 

A continuous random variable is said to have a Dagum 

distribution, or X ∼ 𝐷𝑎𝑔(𝛽; 𝜆; 𝛿) , if its probability 

density function (PDF), cumulative function (CDF), and 

the inverse cumulative function are respectively as follows 

[1,3]: 

𝑓(𝑥; 𝛽; 𝜆; 𝛿) = 𝛽𝜆𝛿𝑥−𝛿−1(1 + 𝜆𝑥−𝛿)
−𝛽−1

, 

𝑥 > 0,   𝛽, 𝜆, 𝛿 > 0,             (1) 

𝐹(𝑥; 𝛽; 𝜆; 𝛿) = (1 + 𝜆𝑥−𝛿)
−𝛽

,        (2) 
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𝐹−1(𝑦; 𝛽; 𝜆; 𝛿) = 𝜆
1

𝛿 (𝑦
− 

1

𝛽 − 1)
− 

1

𝛿

,    0 ≤ 𝑦 ≤ 1,                       (3) 

where 𝛽 and 𝛿 are the shape parameters, 𝜆 is the scale parameter, and 𝑦 is the value of the cumulative function. 

Now, consider individual chance constraints having only one random parameter on the right-hand side (RHS), as follows: 

𝑃𝑟{∑ 𝑎𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≥ 𝑏̃𝑖} ≥ 𝛾𝑖 , 𝑖 = 1, … , 𝑚1,                            (4) 

𝑃𝑟{∑ 𝑎𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≤ 𝑏̃𝑖} ≥ 𝛾𝑖 , 𝑖 = 𝑚1 + 1, … , 𝑚2.                          (5) 

Here 𝑥𝑗 , 𝑗 = 1, 2, … , 𝑛,  represents the decision variable, 𝑎𝑖𝑗 , 𝑖 = 1, 2, … , 𝑚2, 𝑗 = 1, 2, … , 𝑛,  is constant. and 

𝑏̃𝑖~𝐷𝑎𝑔(𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖), 𝑖 = 1, … , 𝑚2, Finally, 0 ≤ 𝛾𝑖 ≤ 1 represents the tolerance measure for the 𝑖𝑡ℎ constraint, then the 

exact equivalent deterministic linear constraints respectively are as follows [8]: 

∑ 𝑎𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≥ 𝜆𝑖

1

𝛿𝑖 (𝛾𝑖

− 
1

𝛽𝑖 − 1)
− 

1

𝛿𝑖
, 𝑖 = 1, … , 𝑚1,                       (6) 

∑ 𝑎𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≤ 𝜆𝑖

1

𝛿𝑖 ((1 − 𝛾𝑖)
− 

1

𝛽𝑖 − 1)
− 

1

𝛿𝑖
 , 𝑖 = 𝑚1 + 1, … , 𝑚2.                  (7) 

Recently, many bivariate Dagum distributions were 

presented. For example, in 2017, Muhammed [9] proposed 

a singular bivariate Dagum distribution using an idea 

proposed by Marshall and Olkin. In 2018, Popović et al [10] 

introduced a tractable bivariate extension of the univariate 

Dagum distribution by using the Marshall–Olkin approach 

and examining its dependence properties. 

Historically the chance-constrained programming (CCP) 

technique was introduced by Charnas and Cooper [11] in 

1959, in the case of individual chance constraints. Then, in 

1965, Miller and Wagner [12] presented the joint chance 

constraints case. So, since the emergence of this technique, 

many studies have been presented, and most of those 

studies assumed the independence between random 

parameters for simplicity. However, usually many random 

parameters are dependent and follow non-negative 

distributions in real-world applications, especially in 

economic and social problems [8,13].  

Therefore, many studies presented the equivalent 

deterministic programming models corresponding to the 

JCCP models under the dependence assumption. For 

example, in 2018, Hafez et al [14,15] assumed that the 

RHS or LHS parameters were dependent random variables 

(RVs) that followed the approximated Downton bivariate 

exponential distribution. In 2019, El-Dash [16] presented 

an extension of the Freund bivariate exponential 

distribution, assuming that the parameters in the RHS or 

some of the LHS parameters are RVs. Then, in 2020, 

El-Dash presented an extension of Farlie, Gumbel, and 

Morgenstern's bivariate exponential distribution [17]. In 

2021, Ebaid and El-Dash [18] introduced a bivariate 

generalized exponential by the Cuadras-Augé copula 

function for the univariate generalized exponential 

distributions, assuming that the random parameters in the 

R.H.S. of joint constraints follow the proposed distribution. 

Then, in the same year, they assumed that the RHS 

parameters were dependent RVs that follow a derived 

bivariate Lomax distribution using the 

Farlie-Gumbel-Morgenstern (FGM) copula function [19]. 

The structure of this study is as follows: we present a 

new bivariate Dagum distribution using FGM Copula in 

Section 2. Following that, the JCCP linear model with 

dependent random parameters and its exact equivalent 

deterministic nonlinear programming model are provided 

in Section 3. We present a numerical example in Section 4. 

Finally, section 5 presents conclusions. 

2. A new Bivariate Dagum Distribution 
Using FGM Copula 

Copula functions are tools for modelling multivariate 

stochastic dependence between RVs and can be defined as 

functions that link or join multivariate distributions with 

their one-dimensional marginal functions. It was first 

introduced in the work of Sklar [20] in 1959 through his 

theorem. In literature, there are many families of copulas 

with one or more dependence parameters, for instance, the 

Farlie-Gumbel-Morgenstern copula, the Gaussian copula, 

the Archimedean copula, etc., and they have different 

properties that are indispensable in many applications [21]. 

One of the most important families is the FGM copula, 

which was introduced first by Morgenstern [22]. 

According to the bivariate FGM copula function, the 

joint CDF (JCDF) and the FGM copula density function 

for two RVs 𝑋1, 𝑋2 respectively, are defined by [16]:
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𝐹(𝑥1, 𝑥2) = 𝐶(F(𝑥1), G(𝑥2)) = F(𝑥1)G(𝑥2)[1 + 𝜃(1 − F(𝑥1))(1 − G(𝑥2))],     𝜃ϵ[−1,1],    (8) 

𝑐(F(𝑥1), G(𝑥2)) = [1 + 𝜃(1 − 2F(𝑥1))(1 − 2G(𝑥2))].                     (9) 

Where: 𝜃 is the dependent parameter which shows the level of dependence between two RVs, so that when it is equal 

to zero, it means that the two variables are independent. 

Also, the joint PDF (JPDF) is as follows: 

𝑓(𝑥1, 𝑥2) = f(𝑥1)g(𝑥2) ∙ 𝑐(F(𝑥1), G(𝑥2)).                          (10) 

Through the following theorem, the FGM copula will be used to build a new bivariate Dagum distribution, where the 

JPDF and the JCDF are presented. 

 

Theorem (2.1): Let 𝑋𝑖  ∼ 𝐷𝑎𝑔(𝛽𝑖; 𝜆𝑖; 𝛿𝑖), 𝑖 = 1,2, be dependent RVs, then the JCDF and the JPDF of (𝑋1, 𝑋2) 

respectively are as follows: 

𝐹(𝑥1, 𝑥2) = ∏ (1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖2
𝑖=1 + 𝜃 ∏ (1 + 𝜆𝑖𝑥𝑖

−𝛿𝑖)
−𝛽𝑖2

𝑖=1 {1 − ∑ (1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖2
i=1 + ∏ (1 + 𝜆𝑖𝑥𝑖

−𝛿𝑖)
−𝛽𝑖2

𝑖=1 }, 

(11) 

𝑓(𝑥1, 𝑥2) = ∏ 𝛽𝑖𝜆𝑖𝛿𝑖𝑥𝑖
−𝛿𝑖−1

2

𝑖=1

(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖−1
[1 + 𝜃 (1 − 2 ∑(1 + 𝜆𝑖𝑥𝑖

−𝛿𝑖)
−𝛽𝑖

2

i=1

+ 4 ∏(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

𝑖=1

)] , 

𝑥𝑖 > 0,   𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖 > 0, 𝑖 = 1,2,   − 1 ≤ 𝜃 ≤ 1.                      (12) 

Proof: According to the bivariate FGM copula function, the JCDF is obtained as follows: 

𝐹(𝑥1, 𝑥2) = F(𝑥1)G(𝑥2)[1 + 𝜃(1 − F(𝑥1))(1 − G(𝑥2))] 

= (1 + 𝜆1𝑥1
−𝛿1)

−𝛽1
(1 + 𝜆2𝑥2

−𝛿2)
−𝛽2

{1 + 𝜃 [1 − (1 + 𝜆1𝑥1
−𝛿1)

−𝛽1
] ∙ [1 − (1 + 𝜆2𝑥2

−𝛿2)
−𝛽2

]} 

= ∏(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

𝑖=1

 {1 + 𝜃 − 𝜃 ∑(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

i=1

+ 𝜃 ∏(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

𝑖=1

} 

= ∏(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

𝑖=1

+ 𝜃 ∏(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

𝑖=1

{1 − ∑(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

i=1

+ ∏(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

𝑖=1

}. 

Then, the JPDF is obtained as follows: 

𝑓(𝑥1, 𝑥2) = f(𝑥1)g(𝑦) ∙ c (F(𝑥1), G(𝑦)) 

= 𝛽1𝜆1𝛿1𝛽2𝜆2𝛿2 ∙ 𝑥1
−𝛿1−1(1 + 𝜆1𝑥1

−𝛿1)
−𝛽1−1

∙ 𝑥2
−𝛿2−1(1 + 𝜆2𝑥2

−𝛿2)
−𝛽2−1

∙ {1 + 𝜃 [1 − 2(1 + 𝜆1𝑥1
−𝛿1)

−𝛽1
] ∙ [1 − 2(1 + 𝜆2𝑥2

−𝛿2)
−𝛽2

]} 

= ∏ 𝛽𝑖𝜆𝑖𝛿𝑖𝑥𝑖
−𝛿𝑖−1

2

𝑖=1

(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖−1
∙ [1 + 𝜃 (1 − 2 ∑(1 + 𝜆𝑖𝑥𝑖

−𝛿𝑖)
−𝛽𝑖

2

i=1

+ 4 ∏(1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖

2

𝑖=1

)]. 

The surface plots of the bivariate PDF and CDF of the Dagum distribution (BDagum) for various parameter values 
(𝛽1, 𝜆1, 𝛿1, 𝛽2, 𝜆2, 𝛿2; 𝜃) are shown in Figures 1 and 2, respectively, as follows. 
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Figure 1.  The JPDF plot of the BDagum for various values of parameters (𝛽1, 𝜆1, 𝛿1, 𝛽2, 𝜆2, 𝛿2; 𝜃). 

 

Figure 2.  The JCDF plot of the BDagum for various values of parameters (𝛽1, 𝜆1, 𝛿1, 𝛽2, 𝜆2, 𝛿2; 𝜃). 

Special Case (2.1): In case of independence between RVs 𝒙𝒊, 𝒊 = 𝟏, 𝟐, we have, 𝜽 = 𝟎, and then the JCDF and the 

JPDF in (11) and (12), respectively, become as follows: 

𝐹(𝑥1, 𝑥2) = ∏ (1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖2
𝑖=1   .                           (13)  

𝑓(𝑥1, 𝑥2) = ∏ 𝛽𝑖𝜆𝑖𝛿𝑖𝑥𝑖
−𝛿𝑖−12

𝑖=1 (1 + 𝜆𝑖𝑥𝑖
−𝛿𝑖)

−𝛽𝑖−1
, xi > 0,    𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖 > 0,   𝑖 = 1,2.            (14) 

In the next section, we will apply the previous theorem in the context of probabilistic programming model. 

3. Joint Chance Constrained Linear Programming Model 

Here, we will illustrate the conversion of the linear JCCP model into an exact equivalent deterministic nonlinear model 

assuming that some parameters follow the derived bivariate Dagum distribution [8,13].  

Consider the following linear JCCP model: 

𝑀𝑖𝑛. 𝑍 = ∑ 𝐶𝑗 𝑥𝑗
𝑛
𝑗=1 ,                                       )15) 

S. T. ∑ 𝑎𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≥ 𝑏𝑖 ,   𝑖 = 1,2, … , 𝑚,                           (16) 

𝑃𝑟{∑ 𝑎𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≥ 𝑏̃𝑖 , ∑ 𝑎𝑖+1,𝑗𝑥𝑗 

𝑛
𝑗=1 ≥ 𝑏̃𝑖+1} ≥ 𝛾𝑖 ,  𝑖 = 𝑚 + 1,                    (17) 



782 A Joint Chance Constrained Programming with Bivariate Dagum Distribution  

 

𝑃𝑟{∑ 𝑎𝑖𝑗𝑥𝑗 
𝑛
𝑗=1 ≤ 𝑏̃𝑖 , ∑ 𝑎𝑖+1,𝑗xj 

n
j=1 ≤ 𝑏̃𝑖+1} ≥ 𝛾𝑖, 𝑖 = 𝑚 + 2,                   (18) 

 𝑥𝑗 ≥ 0,      𝑗 = 1, … , 𝑛,                                (19) 

where 𝐶𝑗 , 𝑗 = 1, 2, … , 𝑛, and 𝑏𝑖, 𝑖 = 1, 2, … , 𝑚,  are constants, and 

(𝑏̃𝑖 , 𝑏̃𝑖+1) ~ 𝐵𝐷𝑎𝑔(𝛽𝑖 , 𝜆𝑖 , 𝛿𝑖 , 𝛽𝑖+1, 𝜆𝑖+1, 𝛿𝑖+1;  𝜃 ), 𝑖 = 𝑚 + 1, 𝑚 + 2, are dependent random parameters and follow 

the above bivariate distribution in (11) and (12). 

In the following theorem, we introduce the exact nonlinear equivalent deterministic constraints of the joint chance 

constraints in (17) and (18). 

Theorem (3.1): Consider the joint chance constraints in (17) and (18). Then, the exact equivalent deterministic 

nonlinear constraints respectively are as follows: 

∏ fs(𝑥𝑠)−𝛽𝑠𝑖+1
𝑠=𝑖 + 𝜃 ∏ fs(𝑥𝑠)−𝛽𝑠𝑖+1

𝑠=𝑖 {1 − ∑ fs(𝑥𝑠)−𝛽𝑠𝑖+1
𝑠=𝑖 + ∏ fs(𝑥𝑠)−𝛽𝑠𝑖+1

𝑠=𝑖 } ≥ 𝛾𝑖 , 𝑖 = 𝑚 + 1,      (20) 

∏ fs(𝑥𝑠)−𝛽𝑠𝑖+1
𝑠=𝑖 + 𝜃 ∏ fs(𝑥𝑠)−𝛽𝑠𝑖+1

𝑠=𝑖 {1 − ∑ fs(𝑥𝑠)−𝛽𝑠𝑖+1
𝑠=𝑖 + ∏ fs(𝑥𝑠)−𝛽𝑠𝑖+1

𝑠=𝑖 } ≤ (1 − 𝛾𝑖), 𝑖 = 𝑚 + 2,   (21) 

Where fs(𝑥𝑠) = (1 + 𝜆𝑠(∑ 𝑎𝑠𝑗xj 
n
j=1 )

−𝛿𝑠
). 

Proof: For the joint chance constraints in (17), it is clear that [8]:  

𝑃𝑟 {∑ 𝑎𝑖𝑗xj 

n

j=1

≥ 𝑏̃𝑖 , ∑ 𝑎𝑖+1,𝑗xj 

n

j=1

≥ 𝑏̃𝑖+1} ≥ 𝛾𝑖   →  𝐹𝑏̃𝑖,𝑏̃𝑖+1
(∑ 𝑎𝑖𝑗xj 

n

j=1

, ∑ 𝑎𝑖+1,𝑗xj 

n

j=1

) ≥ 𝛾𝑖 , 

where 𝐹𝑏̃𝑖,𝑏̃𝑖+1
(. , . ) represents the JCDF of 𝑏̃𝑖 , 𝑏̃𝑖+1 defined in (11). Therefore, by direct substitution, we get constraint 

(20). 

Similarly, for the joint chance constraints in (18) we have, 

𝑃𝑟 {∑ 𝑎𝑖𝑗xj 

n

j=1

≤ 𝑏̃𝑖 , ∑ 𝑎𝑖+1,𝑗xj 

n

j=1

≤ 𝑏̃𝑖+1} ≥ 𝛾𝑖    → 𝐹𝑏̃𝑖,𝑏̃𝑖+1
(∑ 𝑎𝑖𝑗xj 

n

j=1

, ∑ 𝑎𝑖+1,𝑗xj 

n

j=1

) ≤ (1 − 𝛾𝑖), 

Therefore, by substituting 𝐹𝑏̃𝑖,𝑏̃𝑖+1
(. . . ), we get constraint (21). 

Special case (3.1): When 𝜽 = 𝟎, then the corresponding exact equivalent deterministic linear constraints of the 

constraints in (20) and (21) respectively are as follows: 

0 ≤ ∑ 𝑎𝑖𝑗xj 
n
j=1 ≤ 𝐴𝑖, and 0 ≤ ∑ 𝑎𝑖+1,𝑗xj 

n
j=1 ≤ 𝐴𝑖+1,                     (22) 

0 ≤ ∑ 𝑎𝑖𝑗xj 
n
j=1 ≤ 𝐵𝑖, and 0 ≤ ∑ 𝑎𝑖+1,𝑗xj 

n
j=1 ≤ 𝐵𝑖+1,                     (23) 

where the constants are 𝐴𝑖 = (𝜆𝑖)
 

1

𝛿𝑖 (e
− ln(𝛾𝑖)

𝛽𝑖 − 1)

− 
1

𝛿𝑖

, 𝐴𝑖+1 = (𝜆𝑖+1)
 

1

𝛿𝑖+1 (e
− ln(𝛾𝑖+1)

𝛽𝑖+1 − 1)

− 
1

𝛿𝑖+1

, 

𝐵𝑖 = (𝜆𝑖)
 

1

𝛿𝑖 (e
− ln(1−𝛾𝑖)

𝛽𝑖 − 1)

− 
1

𝛿𝑖

, 𝐵𝑖+1 = (𝜆𝑖+1)
 

1

𝛿𝑖+1 (e
− ln(1−𝛾𝑖+1)

𝛽𝑖+1 − 1)

− 
1

𝛿𝑖+1

. 

Proof: In the case of independence, then 𝛉 = 𝟎 in constraint (20) and the equivalent deterministic nonlinear constraint 

is as follows: 

[1 + 𝜆𝑖(∑ 𝑎𝑖𝑗xj 
n
j=1 )

−𝛿𝑖]
−𝛽𝑖

∙ [1 + 𝜆𝑖+1(∑ 𝑎𝑖+1,𝑗xj 
n
j=1 )

−𝛿𝑖+1]
−𝛽𝑖+1

≥ 𝛾𝑖. 

The previous constraint is a nonlinear constraint, a logarithmic transformation could be applied as follows: 

−𝛽𝑖𝑙𝑛 [1 + 𝜆𝑖 (∑ 𝑎𝑖𝑗xj 

n

j=1

)

−𝛿𝑖

] − 𝛽𝑖+1𝑙𝑛 [1 + 𝜆𝑖+1 (∑ 𝑎𝑖+1,𝑗xj 

n

j=1

)

−𝛿𝑖+1

] ≥ ln( 𝛾𝑖). 

Let ℎ𝑖 = 𝑙𝑛 [1 + 𝜆𝑖(∑ 𝑎𝑖𝑗xj 
n
j=1 )

−𝛿𝑖] and ℎ𝑖+1 = 𝑙𝑛 [1 + 𝜆𝑖+1(∑ 𝑎𝑖+1,𝑗xj 
n
j=1 )

−𝛿𝑖+1]            (24) 

∴ 𝛽𝑖ℎ𝑖 + 𝛽𝑖+1ℎ𝑖+1 ≤ − ln( 𝛾𝑖). 
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Therefore,  

0 ≤ ℎ𝑖 ≤
− ln(𝛾𝑖)

𝛽𝑖
  and 0 ≤ ℎ𝑖+1 ≤

− ln(𝛾𝑖)

𝛽𝑖+1
.                            (25) 

Using (24), (25) we get 

∑ 𝑎𝑖𝑗xj 
n
j=1 = (𝜆𝑖)

 
1

𝛿𝑖(eℎ𝑖 − 1)
− 

1

𝛿𝑖 = (𝜆𝑖)
 

1

𝛿𝑖 (e
− ln(𝛾𝑖)

𝛽𝑖 − 1)

− 
1

𝛿𝑖

. 

Hence  

0 ≤ ∑ 𝑎𝑖𝑗xj 
n
j=1 ≤ 𝐴𝑖 ,                                     (26) 

Also, 

0 ≤ ∑ 𝑎𝑖+1,𝑗xj 
n
j=1 ≤ 𝐴𝑖+1,                                   (27) 

where 𝐴𝑖 = (𝜆𝑖)
 

1

𝛿𝑖 (e
− ln(𝛾𝑖)

𝛽𝑖 − 1)

− 
1

𝛿𝑖

, 𝐴𝑖+1 = (𝜆𝑖+1)
 

1

𝛿𝑖+1 (e
− ln(𝛾𝑖+1)

𝛽𝑖+1 − 1)

− 
1

𝛿𝑖+1

 

Similarly, for constraint (21), the exact equivalent deterministic linear constraint is as follows: 

0 ≤ ∑ 𝑎𝑖𝑗xj 
n
j=1 ≤ 𝐵𝑖 ,                                     (28) 

Also, 

0 ≤ ∑ 𝑎𝑖+1,𝑗xj 
n
j=1 ≤ 𝐵𝑖+1                                   (29) 

where 𝐵𝑖 = (𝜆𝑖)
 

1

𝛿𝑖 (e
− ln(1−𝛾𝑖)

𝛽𝑖 − 1)

− 
1

𝛿𝑖

,𝐵𝑖+1 = (𝜆𝑖+1)
 

1

𝛿𝑖+1 (e
− ln(1−𝛾𝑖+1)

𝛽𝑖+1 − 1)

− 
1

𝛿𝑖+1

. 

Theorem (3.2): Consider the nonlinear function in the LHS for constraint (20) or (21). Then the exact equivalent 

deterministic nonlinear programming model in (15)-(16) and (19)-(21) is a convex model. 

Proof: The model in (15) -(16) and (19) -(21) is a convex model if and only if the LHS of constraints (20) or (21) are 

strictly convex functions, which occurs if the following condition is met [23]: 

𝐹[α𝑥(1) + (1 −  α)𝑥(2)] < α 𝐹(𝑥(1)) + (1 −  α)𝐹(𝑥(2)) 

Then let 𝑥(1) = (𝑋1
𝑋2

), 𝑥(2) = (𝑋1+∆1
𝑋2+∆2

), 𝑥(1) ≠ 𝑥(2), 𝑥(1), 𝑥(2) ≥ 0,  

 

Now, by substituting the LHS of either constraint (20) or (21)- because both constraints have the same LHS, into the 

LHS of the previous condition, then, 

LHS = F[α x(1) + (1 −  α)x(2)] = F [α (
X1

X2
) + (1 − α) (

X1 + ∆1

X2 + ∆2
)] = F [(

αX1

αX2
) + (

(1 −  α)(X1 + ∆1)

(1 − α)(X2 + ∆2)
)] = F (

X1 − α∆1 + ∆1

X2 − α∆2 + ∆2
) 

= (1 + 𝜃) (1 +
𝜆1

(X1−α∆1+∆1)𝛿1
)

−𝛽1

(1 +
𝜆2

(X2−α∆2+∆2)𝛿2
)

−𝛽2

− 𝜃 (1 +
𝜆1

(X1−α∆1+∆1)𝛿1
)

−𝛽1

(1 +
𝜆2

(X2−α∆2+∆2)𝛿2
)

−2𝛽2

− 𝜃 (1 +

𝜆1

(X1−α∆1+∆1)𝛿1
)

−2𝛽1

(1 +
𝜆2

(X2−α∆2+∆2)𝛿2
)

−𝛽2

+ 𝜃 (1 +
𝜆1

(X1−α∆1+∆1)𝛿1
)

−2𝛽1

∙ (1 +
𝜆2

(X2−α∆2+∆2)𝛿2
)

−2𝛽2

 . 

Using the binomial series, where (1 + 𝑥)𝜑 = ∑ 𝐶𝑛
𝜑∞

𝑛=0 𝑥𝑛 , 𝜑 is real number, |𝑥| < 1, 

LHS = {(1 + 𝜃) ∑ 𝐶𝑛
−𝛽1∞

𝑛=0 ∑ 𝐶𝑚
−𝛽2∞

𝑚=0 + 𝜃 ∑ 𝐶𝑛
−2𝛽1∞

𝑛=0 ∑ 𝐶𝑚
−2𝛽2∞

𝑚=0 − 𝜃 ∑ 𝐶𝑛
−𝛽1∞

𝑛=0 ∑ 𝐶𝑚
−2𝛽2∞

𝑚=0 −

𝜃 ∑ 𝐶𝑛
−2𝛽1∞

𝑛=0 ∑ 𝐶𝑚
−𝛽2∞

𝑚=0 } {[
𝜆1

(X1−α∆1+∆1)𝛿1
]

𝑛

[
𝜆2

(X2−α∆2+∆2)𝛿2
]

𝑚

},                  (30) 

Similarly, by substituting the LHS of constraint (20) or (21) into the RHS in the convexity condition, then: 

 



784 A Joint Chance Constrained Programming with Bivariate Dagum Distribution 

RHS = 𝛼𝐹(𝑥(1)) + (1 −  𝛼)𝐹(𝑥(2)) = 𝛼 𝑓 (
𝑋1

𝑋2
) + (1 − 𝛼) 𝑓 (

(𝑋1 + ∆1)

(𝑋2 + ∆2)
)

= 𝛼 {(1 + 𝜃) (1 +
𝜆1

𝑋1
𝛿1

)

−𝛽1

(1 +
𝜆2

𝑋2
𝛿2

)

−𝛽2

− 𝜃 (1 +
𝜆1

𝑋1
)

−𝛽1

(1 +
𝜆2

𝑋2
)

−2𝛽2

− 𝜃 (1 +
𝜆1

𝑋1
𝛿1

)

−2𝛽1

(1 +
𝜆2

𝑋2
𝛿2

)

−𝛽2

+ 𝜃 (1 +
𝜆1

𝑋1
𝛿1

)

−2𝛽1

(1 +
𝜆2

𝑋2
𝛿2

)

−2𝛽2

}

+ (1 − 𝛼) {(1 + 𝜃) ∙ (1 +
𝜆1

(𝑋1 + ∆1)𝛿1
)

−𝛽1

(1 +
𝜆2

(𝑋2 + ∆2)𝛿2
)

−𝛽2

− 𝜃 (1 +
𝜆1

(𝑋1 + ∆1)
)

−𝛽1

∙ (1 +
𝜆2

(𝑋2 + ∆2)
)

−2𝛽2

− 𝜃 (1 +
𝜆1

(𝑋1 + ∆1)𝛿1
)

−2𝛽1

(1 +
𝜆2

(𝑋2 + ∆2)𝛿2
)

−𝛽2

+ 𝜃 (1 +
𝜆1

(𝑋1 + ∆1)𝛿1
)

−2𝛽1

(1 +
𝜆2

(𝑋2 + ∆2)𝛿2
)

−2𝛽2

}. 

Similarly using the binomial series, we get 

RHS = {(1 + 𝜃) ∑ 𝐶𝑛
−𝛽1∞

𝑛=0 ∑ 𝐶𝑚
−𝛽2∞

𝑚=0 + 𝜃 ∑ 𝐶𝑛
−2𝛽1∞

𝑛=0 ∑ 𝐶𝑚
−2𝛽2∞

𝑚=0 − 𝜃 ∑ 𝐶𝑛
−𝛽1∞

𝑛=0 ∙ ∑ 𝐶𝑚
−2𝛽2∞

𝑚=0 −

𝜃 ∑ 𝐶𝑛
−2𝛽1∞

𝑛=0 ∑ 𝐶𝑚
−𝛽2∞

𝑚=0 } {α [
𝜆1

𝑋1
𝛿1

]
𝑛

[
𝜆2

𝑋2
𝛿2

]
𝑚

+ [
𝜆1

(𝑋1+∆1)𝛿1
]

𝑛

[
𝜆2

(𝑋2+∆2)𝛿2
]

𝑚

− 𝜶 [
𝜆1

(𝑋1+∆1)𝛿1
]

𝑛

[
𝜆2

(𝑋2+∆2)𝛿2
]

𝑚

}.  (31) 

From (30) and (31), it is clear that the condition is satisfied. 

Thus, the function on the LHS of the constraint (20) or (21) is a strictly convex function. So, the model in (15)-(16), 

(19)-(21) is a strictly convex model. Also, this theorem satisfies the case of independence in the previous special case. 

This theorem is important because the convex model can be solved using the cutting plane method and get the global 

optimal solution [23,24]. 

4. A Numerical Example

Consider the following JCCP model: 

Min.  𝑍 = 2x1 + x2,  )32) 

S. T. 2x1 + x2 ≥ 6,  (33) 

x1 + x2 ≤ 5,  (34) 

𝑃𝑟{4x1 + 2x2 ≥ 𝑏3̃, 2x1 + x2 ≥ 𝑏4̃} ≥ 0.9,  (35) 

xj ≥ 0, 𝑗 = 1,2,  (36) 

where (𝑏3̃, 𝑏4̃)~𝐵𝐷𝑎𝑔(𝛽1 = 1, 𝜆1 = 2, 𝛿1 = 2, 𝛽2 = 2, 𝜆2 = 1, 𝛿2 = 2, 𝜃 = 0.8) are dependent random parameters and

follow the derived bivariate Dagum distribution. 

According to theorem (3.1), the exact equivalent deterministic nonlinear programming model using the JCCP 

technique, which corresponds to the above model, is as follows: 

Min.  𝑍 = 2x1 + x2,  )37) 

S. T. 2x1 + x2 ≥ 6,  (38) 

x1 + x2 ≤ 5,  (39) 

1.8(1+2(4x1+2x2)−2)
−1

(1+( 2x1+x2)−2)2 −
0.8(1+2(4x1+2x2)−2)

−1

(1+( 2x1+x2)−2)4 −
0.8(1+2(4x1+2x2)−2)

−2

(1+( 2x1+x2)−2)2 +
0.8(1+2(4x1+2x2)−2)

−2

(1+( 2x1+x2)−2)4 ≥ 0.9,      (40) 

The above model is convex according to theorem (3.2), therefore it can be solved by the cutting plane method [12,22], 

assuming that the bounds of the decision variables are 

0.1 ≤ x1 ≤ 4, 0.1 ≤ x2 ≤ 3      (41) 

Then, the global optimal solution is as follows: 

x1 = 2.95, x2 = 0.1, 𝑧∗ = 6
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5. Conclusions 

Throughout this paper, the JPDF and the JCDF of the 

new bivariate Dagum distribution are presented through 

theorem (2.1) by using the FGM copula. Then, the JCCP 

technique is used to transform JCCP model into an exact 

nonlinear equivalent deterministic programming model 

through theorem (3.1), where some parameters in the JCCP 

linear model follow the derived bivariate Dagum 

distribution, then a special case is introduced regarding 

independent parameters. After that, we have proved that 

the obtained exact nonlinear equivalent deterministic 

programming model is a convex model through theorem 

(3.2) and a global optimal solution could be obtained. 

Finally, a numerical example is presented. 
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